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Abstract 

 

This dissertation is the final part required for the completion of the MSc in Mobile and Web 

Computing at the International Hellenic University. The main purpose is the development of a 

product recommendation system based solely on implicit feedback. The proposed algorithm 

incorporates technologies that include collaborative filtering with matrix factorization and 

association rule mining. 

The proposed methodology implements a hybrid recommendation algorithm in such a way that is 

able to provide recommendations in multiple ways as well as use them to increase its accuracy. 

Moreover it includes implementation of methods for addressing data sparsity, an important issue 

for recommendation systems.  

In addition, it is implemented a relatively new approach to increase the accuracy of matrix 

factorization algorithms via initialization of factor vectors, which as far as we know is tested for 

the first time an implicit model-based collaborative filtering approach. 

The evaluation of the methodology shows that the implemented methods are promising and their 

implementation in real world scenarios could offer personalization and its benefits to customers 

and shop owners. 

I would also like to thank my supervisor Dr. Christos Tjortjis for the guidance and valuable ideas 

that was necessary during the elaboration of this dissertation.  
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1 Introduction 

It is evident that the pace that technology advances have been increased over the last decades. 

Scientific discoveries and technological growth introduced to people a huge variety of options 

and possibilities. One of the most important advantages that technology offers is the direct and 

easy access to information. Nowadays access to vast networks of information is easy and people 

can be informed about almost anything they desire. 

Even though ease of access provided people with the ability to acquire the needed information, 

they are now facing a new obstacle: this of easily finding what they need. On one hand, 

information abundance covers the majority of needs but on the other hinders accessibility to 

information truly valuable to the user. The term that describes this phenomenon is “Information 

Overload”.  Often users are presented with seemingly similar information to their inquiry but 

irrelevant to their actual needs, rendering this way the discovery of the desired knowledge a 

difficult task. 

Continuous expanding of information overload necessitated the development of systems that aim 

to alleviate such problems. Such systems were introduced in order to filter or retrieve the desired 

information. Recommendation systems is an example. Recommenders aim to filter out all the 

unnecessary and irrelevant information and present those that fit the user’s needs. This way the 

user is relieved of the burden of discovering what he needs making this way information truly 

accessible. 

 

1.1 Definitions 

The information overload problem has been created due to the increased volume and availability 

of information. It describes the difficulty that today’s users face in discovering a specific piece of 
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information. For the purpose of tackling the problem numerous algorithms from different 

approaches have been developed. 

According to [1] different approaches fall into those categories. Hyper-textual links is a form of 

organizing information and utilizing hyper-text links to guide user to the desired documents or 

items. Categorization aims to assign any document or item to categories and provide users with 

access to these. Retrieval and Filtering Systems generally aim to understand the relevance degree 

of the data against the user inquiries and preferences.  

A retrieval system has the purpose of selecting relevant information from dataset of fixed size. 

Moreover they are designed to serve user inquiries and satisfy a specific need of the user each 

time. On the other hand a filtering system aims to filter out irrelevant information, as the name 

implies, usually from a stream of data. Another contrast to retrieval systems is that they use 

profiling techniques to infer user interests based on present and past user behaviour. 

Recommender systems (RSs) fall in the category of information filtering approaches. The term 

describes the software tools and techniques that are utilized in order to recommend items of 

interest and value to the user [2].  

It was observed that people take into consideration the opinion of their social environment in 

order to decide upon buying items. For example people are influenced and often rely on reviews 

regarding the products they intend to buy from an online store or follow suggestions from their 

friends on what books to read and movies to watch. First recommendation algorithms tried to 

model this behaviour and used communities for creating their recommendations. 

Initial systems were known as Collaborating Filtering [3]. First communities of users were 

formed based on their interests. Suggestions to a user were formed based from those items that 

the other users of his community preferred. 

As items can be considered a variety of things; from books, websites or products to social profile 

pages and even job positions. For example a news blog can use RSs to recommend articles based 

on the readers preference of topics. In the same fashion a social network could recommend 

friends with interests in similar topics to a user.  



3 

 

Different RSs can be very diverse depending on the domain, approach in creating the 

recommendations, information that used to extract them and other factors. Different domains 

offer different possibilities, limitations or data that the system could exploit and thus play a 

crucial role in the design of such a system. It is obvious that when we consider a book 

recommender system we could use the author or the title of a book as well as possible user 

ratings to extract knowledge from. On the other hand author and ratings might not be present 

when considering a recommendation system for an online store. 

Another aspect that should be considered during the designing of such a system is the source of 

the information and by what means these are acquired. Input data are of two types either explicit 

or implicit. Explicit input data are the ones provided from the user and implicit ones are those 

that come from monitoring user behaviour such as past purchases.  

Also different case studies have different functional requirements. A recommender system that 

aims to provide real time suggestions depends heavily on the execution time of the algorithm. 

This factor excludes by definition approaches with high cost in execution time. 

Due to the variety of domains, the source and the information availability while also any other 

possible limitations and restrictions that might exist, not all algorithms are equally useful for 

each and every case. There is not one algorithm able to provide the best recommendations 

compared for any case. 

 

1.2 Recommendation Systems and Benefits 

Recommendation Systems proved to be a valuable tool for the users as well as the systems that 

implemented them [33,34]. On one hand they effectively deal with the information overload 

problem and in addition they offer personalization to a web site or service which appeals to the 

end user enhancing his experience. 
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1.2.1 Well-known Implementations 

The importance of Recommendation Systems can easily be seen by their various existing 

implementations in well-known websites. 

Amazon.com 

[4] Amazon.com created its recommendation system in 1998 implementing an item-based 

collaborative filtering algorithm. Based on users’ past behavior, context and ratings it manages to 

offer a unique customer experience.  

The system is embedded and utilized in multiple ways throughout the whole shopping 

experience.  It starts even from the beginning when a number of products is recommended based 

on previously seen items. It recommends products that were bought together with the product 

being watched. Furthermore it recommends items that might be related to the product in order to 

discover unknown interests. Additionally it has a section where recommendations extracted 

based on user purchase history.  

The company met a big growth while at the same time a big part of its sales comes from the 

recommendations. 

YouTube  

As described in [5] YouTube also has developed its own recommendation engine. YouTube’s RS 

is a top-N recommender and it aims to provide personalized recommendations based on user 

recent behavior. Moreover the second goal of the system is to promote through recommendations 

the wide range of available content that offers. Some of the main challenges that the system had 

to face was the lack of meta-data associated with the videos while also the short user interactions 

that made the discovery of user intent a difficult task. Moreover constant refreshment of the 

suggestions is required due to the short life cycle of the videos from upload to becoming viral. 

The RS gathers data from a variety of sources. It uses all the content information of the videos 

and at the same time considers user input either it explicit or implicit.   



5 

 

Lastly YouTube considers the way the recommendations are being presented to its users as 

highly important. It offers explanations as to why they are recommended and advances 

personalization even more by allowing its users to control where and how many 

recommendations should appear. 

Netflix 

Another well-known RS is Netflix. Netflix does not create recommendations based on a single 

algorithm, but rather utilizes a number of different ones regarding the use case they were 

designed for [6]. Taking into account the fact that the longer time a user spends in searching for a 

show the more likely it is for him to stop using the service. Company focused its system in being 

able to provide suggestions that will draw the attention of the user in the top of the list of shows. 

On top of that it should be made clear to the user why each show is being recommended. 

At this point it should be noted that in its effort to improve the RS the company organized a 

competition. Netflix Prize 2009 offered 1 million dollars to the team with the higher prediction 

accuracy algorithm. As a result many algorithms are being used in production even today [7] 

As already noted the system is composed by a number of algorithms. Personalized Video Ranker 

(PVR) is used to offer personalization and is responsible to define the order in which videos of a 

specific genre appear. Top-N Video Ranker is responsible to find the best suggestions regarding 

the user’s preference regardless of genre. Essentially Netflix also uses different algorithms for 

ordering shows in the rows of Trending rows and Continues watching. Moreover Video-Video 

similarity is used to suggest show in a “Because You Watched” section.  

 

1.2.2 Benefits 

It is evident that RS do not only benefit the users of a system; a website or a company can have a 

great deal of profit by implementing an efficient recommender system. 
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Revenue 

Recommender systems not only aim to provide interesting items to its users, but also aim to 

increase the sales via e-commerce. By modelling each user’s needs and interests it is able to 

guide or promote those items that are more likely to be consumed by the specific user. Moreover 

they can be implemented in such a way to aim to increase cross-sales. Suggestions could be 

made based on the items that the user intents to buy and find possible complementary items. It is 

not a mystery why RSs are strongly associated with higher conversion rates.  

Promote unpopular products 

RS knowing the interests of a user and is able to provide diverse suggestions. This way the 

provider can advertise those products they wish to promote to the appropriate users. 

User Satisfaction  

RSs engage users with their recommendations since they draw the attention of the user to more 

items without needing him to search. With interesting and relevant recommendations the user 

will have an enjoyable experience. It is more likely for the user to prefer the service again in the 

future. 

Loyalty 

RS is able to offer enhanced personalization to the user which is improved the more the user 

visits the system. A relation between the website and the user is formed since the more tailored 

to the needs to the customer a system becomes the more satisfied the user will be. This leads to 

increase of loyalty, because continuous satisfied users value the experience they get and keep 

returning to the sites they enjoy to interact with. 

Provide Reports 

Furthermore RS can be used as valuable tool to extract reports and monitor user behaviour. This 

can give a leverage to the service provider since it can see the impact of various promotional 

campaigns or other actions. In addition knowing the interest of customers and users is a valuable 
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knowledge that can be used in other ways to provide profit for the company. On point example 

of that is Netflix which by taking into account subscribers preferences is able to maintain an 

efficient catalogue size. Before buying new content, the company calculates the actual worth of 

the content against its subscribers’ interests. 

 

1.3 The Problem 

Recommender systems are proved to be a valuable feature which enhances user experience as 

well as an important tool in the hands of the service provider. E-commerce sites are a domain 

that could greatly benefit from the advantages a Product Recommendation System has to offer. 

These websites though must take into consideration all the factors that affect user experience in 

order to increase revenue. Users often use e-commerce systems because they can do their 

shopping with comfort and ease. It is evident that the design of an ecommerce website should be 

done in such a way that it does not harass users with constant questions about their preferences 

and force them to provide feedback.  

Additionally the system needs to make the whole process of shopping easy and fast, otherwise it 

risks losing sales and loyalty. It obvious that these implementations suffer from the lack of 

explicit input and feedback from the users. Even though recommender systems have been 

extensively researched, most of the times research focused on use cases where the user provided 

input explicitly via a ranking system. There is still more room to design and enhance 

recommendation algorithms that are based solely on implicit information gathered by monitoring 

user behavior. This way ecommerce systems can offer personalized recommendations without 

deteriorating the experience of its users. Such implicit information, even though they are easily 

gathered from monitoring users browsing behavior and exploiting his purchase history, often 

concern a small number of items rather than the whole set offered by the provider. Thus, an 

additional challenge that should be addressed is data sparsity that these implementations suffer 

from. 
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1.4 Scope of the Dissertation 

The purpose of this study is to examine implementations of various recommendation algorithms. 

It aims at developing a Product Recommendation Engine suitable for e-commerce websites, thus 

it will be based solely on implicit input. As input we use a combination of implicit sources. This 

combination consists of browsing user behavior, add to cart actions as well as their purchase 

history. The implemented algorithm is a Matrix Factorization algorithm which incorporates 

confidence and it based on the work of [8]. Additionally, the data sparsity problem is being 

addressed by utilizing association rule mining. 

 

1.5 Dissertation Outline 

In first chapter we present an overview of the recommender systems and their purpose. 

Furthermore we showcase the impact those systems had the latest years and how well-known 

companies integrated them to their systems. Also we present some key benefits they can offer to 

their service providers. Lastly we define the problem we will address, present the scope of the 

dissertation and provide a description for every chapter of the dissertation 

In the second chapter we present the basic concepts behind recommender systems and describe 

various input sources, followed by the main categories of recommendation algorithms with an 

analysis of each approach to its key concepts and the idea that it aims to model. Furthermore, we 

describe various evaluation ways used to measure the overall efficiency of such systems. 

In the third chapter we conduct a literature review of recommender implementations. We make a 

comparison to our approach and in which way some of these ideas could beneficially impact a 

system like ours. Most of the literature review concerns implicit feedback systems, but also 

algorithms that exploit explicit input as well as a combination of those. 

In the fourth chapter we provide description and details of the design for our proposed system. 

The idea we aim to model is discussed and finally we also present flow charts of the system. In 
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the fifth chapter we demonstrate the implementation of our system in Python. We describe each 

function designed and its purpose. Additionally we give brief overview of the libraries used. 

In the sixth chapter we present the evaluation of our system as well as conclusions resulted from 

our research. Finally we propose some ideas for future work in order to improve the efficiency of 

the specific system and discuss promising concepts and paths that could be modeled in new 

designs of a recommendation algorithm. 
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2 Core Concepts and techniques 

 

2.1  Feedback 

Recommender systems are in essence algorithms that process data in order to predict user 

interest regarding items. The data that these systems process are categorized in two categories 

based on the way they are acquired: they can be explicit or implicit.  

 

2.1.1 Explicit feedback 

Explicit feedback is the input that the users provide to the system by a mechanism in order to 

express their opinion regarding items. Examples of such mechanisms are rating scales like star 

rating systems and like/dislike buttons. Rating scales consist of range of numbers each of which 

denotes different interest levels that a user has towards an item. Ranges vary depending on the 

implementation of the rating system. In a usual 5 rating system the user denotes with 1 star those 

items they did not like or have no interest in and with 5 those of great importance.   

 

2.1.2 Implicit feedback 

Implicit feedback on the other hand is generated by the systems without requiring the user to 

express his opinion regarding items and is heavily dependent on the domain the system is 

designed for. It involves monitoring user behavior while using the system. The most common 

sources of implicit information is purchase history (e-commerce systems), views (products, 

videos, articles), view duration which is used to differentiate actual interest to accidental clicks 

or shares in case of social network systems. A combination of such measurements can be used to 

infer user interests. 
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2.1.3 Feedback differences similarities 

As described in [9] explicit and implicit feedback have some key differences. Explicit feedback 

is more scarce compared to implicit feedback which can be overwhelming since users tend to 

spend much time on rating items. Explicit feedback is biased since every user uses the ranking 

system in a different way. A key difference is that explicit feedback contains information 

regarding negative feedback. Implicit feedback consists of monitored user behavior towards an 

item, the absence of actions for a specific item cannot be considered as negative, since the user 

might not have discovered this item.  

 

2.2 Content-Based Filtering 

The main idea behind Content based Information Filtering algorithms is based in comparing the 

item features against the user’s preference on these features [10]. Thus calculating the level of 

interest a user has on a specific item. User’s preferences on item features is called a user profile, 

modeled by analyzing past user behavior on item features and is an important step for content 

based filtering [28]. Such systems require processes for creating feature representation of the 

items. Furthermore, a mechanism for capturing and constructing accurate user profiles is 

essential. Finally the last phase of CBF algorithms is to compare items features and user profiles 

and create personalized suggestions for each user. 

 

2.2.1 Item Features 

Due to the diversity of items the process of extracting item features depends heavily on the 

specific domain. For example, some of the features that could be used for a book recommender 

system are the title, description and author while in an e-commerce product does not have 

authors, but the product category could be utilized instead.  
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Moreover, items hold information in a different way. A product’s price and color is an example 

of structured data. Though information of items that exists in a structured manner is not always 

the case. We can consider book descriptions where there are not any limitations or predefined 

values as unstructured data. In addition, it is possible for a domain to hold information about its 

items in both ways. An example would be an e-commerce system which holds attributes of its 

products like price and color as well as a description of it. In cases where the extraction of item 

features from unstructured data is required, techniques from information retrieval systems and 

natural language processing algorithms are usually utilized [2].  

As described in [10], one of the usual approaches is for the system to transform unstructured to 

structured information. An example would be to count the number of occurrence of words in 

text. An alternative is stemming, i.e. the process that creates terms to categorize words with the 

same root and meaning. The system can then calculate the importance level of a term in an item. 

Importance is measured by calculating the tf*idf (term-frequency times inverse document 

frequency) weight, where a document is the feature of the item we want to process, i.e. product 

or book description. From [10] the weight wt,d of the a term t in a document d is a function of the 

frequency of t in the document tft, d , the number of documents with the term dft and the total 

number of documents is N. 

 

The idea behind Term Frequency-Inverse Document Frequency is that terms with high 

occurrence in a document but rare in the rest are more relevant and important [2]. 
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2.2.2 User profiles 

Content-based Filtering systems aim to create profiles of user interests. These profiles can be 

constructed from various sources. They could consist of explicitly stated preferences using 

predefined terms or categories. In addition they can be constructed with the use of implicit 

information from past interactions like queries, views or time spent browsing.  

In cases of explicitly stated preferences, the system offers a way for the user to express his 

interests. This can be done in a variety of ways, such as by presenting him with a set of products 

and asking him to rate or choose those of interest to him or by allowing him to build his own 

profile by stating topics of interests. 

This systems have some limitations while at the same time they are not suitable for every case. 

One of its main disadvantages is that usually users do not like to provide or spend time rating 

items. Especially in e-commerce systems which they aim at minimizing the effort required by the 

user to complete a transaction, such implementations hinter overall performance of the system. 

 

2.2.3 Classification Algorithms  

Another way that user profiling can be used is to feed a classification learning algorithm [10]. 

Such algorithms are used extensively in content based algorithms since they learn a model of 

user’s interests. The classifier given a model and a new item can predict if the specific item is of 

interest to the user. 

Some approaches use probabilistic models on past user interaction. Naïve Bayes used for text 

classification is an accurate and popular example of such algorithms. The idea of the algorithm is 

to calculate the probability of a document to belong to a specific class. The probability for any 

document to belong in this class, the probability the specific document to belong to this class and 

the probability to see this document are used. The Bayes theorem is applied to these 

probabilities:  
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The document belongs to the class with the highest probability. 

Another established algorithm used in content-based filtering, and more specifically in text 

categorization domains is Relevance feedback and Rocchio’s Algorithm [2]. The main idea is to 

let users specify if the items returned by the system are interesting to them. The feedback can 

then be used to improve the retrieval of items. Relevance feedback has been the main focus of 

many researchers that aimed to develop information retrieval algorithms. 

Rocchio’s algorithm is a relevance feedback algorithm. The algorithm modifies the initial query 

by weighting relevant and irrelevant documents. The approach as described in [10] creates two 

document prototypes. A relevant document prototype which is created from the vector sum of all 

relevant documents and an irrelevant document prototype which is created in the same way as 

the relevant one, a vector sum of irrelevant documents. Q is the query, α, β and γ are parameters 

used to control the influence of the initial query and the vector sums are the relevant and 

irrelevant prototypes. 

 

The aim of the formula is with each iteration to transform the query vector closer to relevant 

clusters and away from irrelevant ones.  

Researchers have used a modification of the Rocchio algorithm for user profiling in unstructured 

text. In Rocchio-based classification, a vector sum is created for each class by summarizing the 

documents that belong to this class. These vectors can be used against the vector of an unlabeled 

document in order to classify it.  

Another learning method used in content-based filtering is the Nearest Neighbor algorithm [2]. 

This type of algorithms is very simple and straightforward. In order to classify a new item, they 
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compare it with all the known items and is classified based on the labels of its nearest neighbors. 

The comparison is done by similarity function, such as the cosine similarity. Even though this 

type of algorithms are proved to be accurate their overall efficiency drops due to execution time. 

Due to the fact that the item is compared to all previously stored known items during 

classification the classification time required is long. Though there are algorithms that implement 

it for modeling user interests. 

 

2.3  Collaborative Filtering 

The main focus of collaborative filtering is to model a very common thing that humans do during 

their decision making process. It aims to model the habit of sharing opinions about items with 

other people, thus influence and be influenced. People often discuss their opinions on products 

they bought or a restaurant they have been to. During the decision making process people take 

into account these opinions. 

The collaborative filtering approach does not rely on the content of the item in order to produce 

recommendations. It relies on the ratings or past behavior of the user as well as other users [27] 

[2]. It is based on the idea that a user is likely to prefer an item also preferred by similar users . 

This approach overcomes some of the drawbacks of content-based filtering. One of the key 

advantages is that it does not deal with item representation, thus it has reduced complexity as it 

does not deals with feature extraction and it is suitable for systems where the content of items is 

not available. Moreover, it is more likely to produce diverse recommendations to a user as it does 

not depend on a content defined model of the user’s interests.  

Collaborative filtering, even though proved to be effective, heavily depends on the domain that it 

is applied. The specific use case should fit some prerequisites in order to be suitable for 

collaborative filtering. In [11] some factor that affect collaborative algorithms are presented.  

Data can influence directly the efficiency of the algorithm. First there should be many ratings per 

item. These algorithms have been observed to increase in accuracy when there is abundance in 
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ratings, while they hinder in their absence. The number of users should be greater than the 

number of items. If the number of items is bigger the system would be able to create accurate 

recommendations only for a relative small amount of items. Lastly, the user is required to rate 

multiple products, otherwise there are not any information about related items. 

Collaborative filtering algorithms can be divided in categories based on their design. The most 

known distinction is item-based and user-based filtering, which will be presented in the 

following paragraphs. Though according to [12] they can also be categorized based on the way 

of their implementation. Collaborative algorithms that require the whole set of ratings, users and 

items loaded in memory are denoted as memory-based algorithms, while the rest are model-

based. Model based algorithms depend on summarizing rating patterns offline and periodically 

refreshing this summary. In real-world applications though, where the number of users and items 

can be enormous, memory-based algorithms require a lot of resources and thus are deemed 

unproductive. Moreover, another distinction among algorithms can be done if they utilize 

probabilistic models for their recommendations or not [11]. Probabilistic and non-probabilistic 

algorithms. 

 

2.3.1 User-Based Collaborative Filtering 

Common collaborative algorithms used user similarity for their predictions. Similar users are 

usually described as neighbors.  In user-based algorithms this association is utilized in order to 

predict preference of a user towards a specific item. This is achieved by processing the ratings of 

all the user’s neighbors. A very simple form of this approach could take as prediction the average 

rating score of all the neighbors to this item. 

Denoting as u the user, as i the item, as n the neighbor, as N the total number of neighbors and as 

r the rating of the neighbor then then pui is the predicted rating of user u towards i and is equal to 

𝑝𝑢𝑖  =  
∑ 𝑟𝑛𝑖𝑛

𝑁
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The above equation is naïve because it does not take into consideration that all neighbours are 

not equally similar with the user. In order to consider this fact the equation is transformed to 

consider user similarity. 

𝑝𝑢𝑖  =  
∑ 𝑢𝑆𝑖𝑚(𝑢, 𝑛) ∗  𝑟𝑛𝑖𝑛

∑ 𝑢𝑆𝑖𝑚(𝑢, 𝑛)𝑛
 

Furthermore, in order to enhance accuracy we should consider that a user makes different use of 

the rating system. Simply put, some users tend to give higher rating while others lower, but in the 

essence they express the same thing. In order to address this the equation should be further 

adjusted with users’ mean scores. 

𝑝𝑢𝑖  = 𝑟𝑛 + 
∑ 𝑢𝑆𝑖𝑚(𝑢, 𝑛) ∗ (𝑟𝑛𝑖 − 𝑟𝑛)𝑛

∑ 𝑢𝑆𝑖𝑚(𝑢, 𝑛)𝑛
 

 

Practitioners that aim to implement user-based algorithms need to take into consideration some 

obstacles they might face. What is often the case is that some users might not have many 

similarities with other. In this case recommendations will not be accurate. Moreover, it might 

also happen for neighbour users’ ratings to match exactly; this could render the rating of other 

users ineffective. In addition, in order to create neighbourhoods each user should be compared to 

every other user. In real-world applications where there is a plethora of users this would be very 

expensive. In order to alleviate such problems some techniques have be used. A possible 

approach would be to sample the users. Lastly, another approach would be to utilize clustering 

algorithms to locate user’s neighbours.  

 

2.3.2 Item-Based Collaborative Filtering 

In a similar manner to user-based algorithms, item-based collaborative filtering algorithms base 

their recommendations considering similarities, alas in this case we compare item similarity 

instead of user [31]. To make it clearer in order to predict a user’s rating for a specific item we 
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take into account its similar items and the ratings the user have provided for them.  

Denoted as pui the predicted rating of user u for item i, as j a rated item by user and as ruj the 

rating of the user to item j. 

𝑝𝑢𝑖 =
∑ 𝑖𝑆𝑖𝑚(𝑖, 𝑗) 𝑟𝑢𝑗𝑗

∑ 𝑖𝑆𝑖𝑚(𝑖, 𝑗)𝑗
 

 The above equation is very similar to user-based algorithms. The key difference is that in this 

one we have item similarity instead of user similarity. Another difference to the user-based 

equation is that in this case we do not include the average rating of the user. This happens 

because all the ratings are from the same user. 

Variations of item similarity exist, though [11] notes that the most popular and possibly most 

accurate similarity metric is the adjusted-cosine similarity. Adjusted cosine similarity takes into 

account the ratings of all the users. In the following equation we denote as u those users that 

have rated both i and j.  

𝑖𝑆𝑖𝑚(𝑖, 𝑗) =
∑ (𝑟𝑢𝑖 − 𝑟𝑢)(𝑟𝑢𝑗 − 𝑟𝑢)𝑢

√∑ (𝑟𝑢𝑖 − 𝑟𝑢)2
𝑢   √∑ (𝑟𝑢𝑗 − 𝑟𝑢)2

𝑢

 

 

Regarding the implementation of this algorithm and in order to increase its algorithmic 

efficiency it has been proposed to define a minimum amount of required co-ratings for a similar 

item to be considered in the algorithm. Similar to user-based algorithm this approach also 

hinders when items have too few co-ratings.  
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2.4 Contrasting Collaborative and Content-Based 

filtering 

Content-based and Collaborative filtering are essentially different. On one hand content-based is 

based on the idea that a user is likely to prefer items to those he previously liked. In this case the 

main problem is to efficiently extract item characteristics and form user profiles [36,2]. On the 

other hand collaborative filtering does not deal with content and extracts its recommendations 

based on a user’s ratings compared to similar user’s ratings. In this case large volume of ratings 

and preferences is required to be effective. Though, not having to deal with content lifts a big 

burden from the process. 

Since collaborative filtering does not rely on modeling a user’s profile, it usually presents more 

diverse recommendations which are suitable for discovering unknown interests. In this matter 

content-based is restricted to following the defined user preference model. Thus, it is possible not 

to recommend interesting items to the user because they differ slightly from his preferences. 

 

2.5 Matrix Factorization 

Even though we present matrix factorization in a different section, it is a sub-category of 

collaborative filtering algorithms. The approaches described earlier for collaborative filtering are 

usually referred as neighborhood approaches, due to the fact they are based on user or item 

neighbors for recommendations. Matrix factorization belongs to the latent-factor models’ 

category of collaborative filtering algorithms. In these algorithms are characterized by vectors of 

factors [13]. Over the last years this approach became very popular due to their accuracy and 

efficiency.  

Matrix factorization models can be used in either explicit or implicit datasets. Users and items 

can form a matrix with every row representing a user and each column an item. In cases of 

explicitly gathered information the values denote the rating of the user for each item. In implicit 
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feedback datasets though values measure the preference inferred from monitoring user behavior 

like view duration or purchase history. 

The main goal of this approach is to decompose the user-item matrix to two matrices. Each of 

these matrices consists of user or items and same number of factors. Factors are the 

characteristics each item might have like the color and fabric the item is a clothing or genre if we 

the item describes a movie. User-factor matrix describes the preference of each user towards to 

items possessing each characteristic. On the other hand, Item-factor matrix describes how 

relevant each item is to each characteristic.  

We can then visualize users and items as vectors and factors as the dimensions these vectors 

exist. The dot product of a specific user vector with a specific item vector approximates the 

interest level of the user towards this items taking into consideration all of its characteristics. 

Thus we can form recommendations on the result of the dot product. 

Denoting users as u, items as i, the user vector as xu, the item vector as yi. Then the predicted 

recommendation rui is formed from  

𝑟𝑢𝑖 =  𝑦𝑖
𝑇𝑥𝑢 

We can easily understand that the success and effectiveness of a matrix factorization approach is 

to correctly calculate user and item vectors. There are several approaches regarding matrix 

factorization. A well-established model used in information retrieval algorithms is the Singular 

Value Decomposition SVD. 

In order to learn the user and item factors some the system regularizes the squared error of the 

known ratings following the function [13].  

𝑚𝑖𝑛 ∑ (𝑟𝑢𝑖 − 𝑥𝑢𝑦𝑖
𝑇) + 𝜆(||𝑥𝑢||2 + ||𝑦𝑖||

2))
𝑢𝑖

 

λ is the constant that controls the regularization and is taken using cross-validation method. 
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A very interesting approach regarding implicit datasets was presented in [8]. The main idea was 

to predict the level of preference the user would have towards and item rather than the score. The 

preference of a user for an item is modelled by assigning 1 to item the user interacted with and 0 

to each he has not. 

𝑝𝑢𝑖 = {
1,   𝑟𝑢𝑖 > 0
0,   𝑟𝑢𝑖 = 0

 

Moreover the preference is associated with confidence. Confidence was modelled as  

𝑐𝑢𝑖 = 1 + 𝑎𝑟𝑢𝑖 

Confidence aims in scaling the preference of the user towards an item in cases that the user 

viewed the item many times.  

Similarly to the previous explicit feedback approach the vectors obtained by minimizing a cost 

function.  

𝑚𝑖𝑛 ∑ 𝑐𝑢𝑖(𝑝𝑢𝑖 − 𝑥𝑢𝑦𝑖
𝑇) + 𝜆(||𝑥𝑢||2 + ||𝑦𝑖||

2))
𝑢𝑖

 

 

Moreover, the model is further developed in [14]. In this approach the algorithm computes the 

preference probability of a user item pair. Thus the cost function furtherly modified into while at 

this case aimed in maximizing it. 

𝑚𝑎𝑥 ∑ 𝑐𝑢𝑖(𝑥𝑢𝑦𝑖
𝑇) − (1 + 𝑐𝑢𝑖) log(1 + exp(𝑥𝑢𝑦𝑖

𝑇)) −
𝜆

2
||𝑥𝑢||

2
−

𝜆

2
||𝑦𝑖||

2

𝑢𝑖
 

 

Different approaches regarding minimization of the cost function were also developed. Two 

significant are the Stochastic Gradient Descent SGD approach and the Alternating Least Squares 

ALS. 
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In Stochastic Gradient Descent the algorithm predicts rui for each given rating and calculates the 

prediction error by: 

𝑒𝑢𝑖 =  𝑟𝑢𝑖 − 𝑦𝑖
𝑇𝑥𝑢 

And then modifies the parameters with: 

𝑦𝑖 ←  𝑦𝑖 + 𝛾(𝑒𝑢𝑖𝑥𝑢 − 𝜆𝑦𝑖) 

𝑥𝑢 ←  𝑥𝑢 + 𝛾(𝑒𝑢𝑖𝑦𝑖 − 𝜆𝑥𝑢) 

In Alternating Least Squares [13] the idea is that by fixing one of the two unknowns of yi and xu 

the optimization problem is quadratic and there is an optimal solution. Following this idea the 

ALS alternates by fixing on of the vectors. 

The key difference of these approaches concerns efficiency and their scalability. SGD approach 

requires looping over each training case so it is not suitable for dense matrices. Explicit feedback 

datasets are usually sparse which makes SGD an easy and appropriate approach. On the other 

implicit feedback dataset that contain abundant information produce denser matrices where SGD 

might not scale appropriately and thus ALS is more efficient in such cases. On top of the above 

ALS computes vectors independently and offers parallelization of the algorithm which greatly 

benefits computation on large datasets and efficiency. Matrix factorization is also proposed by 

the literature to be suitable for social network environments [34].  

 

2.6 Hybrid Algorithms 

Hybrid algorithms consist of various combinations of the previous approaches [29]. Hybrid 

approaches usually are more efficient and more accurate because they combine techniques to 

alleviate limitations. Though they are not suitable for simpler cases because of the increased 

complexity level they present during the design and implementation phase.  
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2.7 Evaluation 

Success of a recommender system is based in a number of properties. Context of the specific 

domain where the recommender will be deployed heavily affects the overall performance of the 

system. Different use cases of recommender systems aim to satisfy different needs. The 

properties that affect the systems success have to be identified for evaluating the system. 

Most recommendation systems implement a prediction algorithm, thus prediction accuracy 

metrics are commonly used for system evaluation. Root Mean Squared Error (RMSE) is 

commonly used to measure accuracy. Root Mean Squared Error is calculating the squared 

difference between the predicted ratings rp and the true ratings rt for a test set St of user item 

pairs. 

𝑅𝑀𝑆𝐸 =  √
1

|𝑆𝑡|
 ∑ (𝑟𝑝𝑢𝑖 −  𝑟𝑡𝑢𝑖)2

(𝑢,𝑖)∈𝑆𝑡

 

The Mean Absolute Error is an alternative to RMSE and is calculating the absolute difference of 

predicted and real ratings on a test set. 

𝛭𝛢𝛦 =  √
1

|𝑆𝑡|
 ∑ |𝑟𝑝𝑢𝑖 −  𝑟𝑡𝑢𝑖|

(𝑢,𝑖)∈𝑆𝑡

 

The squared difference results in lower ranking for systems that present larger errors compared 

to systems with more but smaller errors. 

In unbalanced test sets, where some items are used or rated more frequent than the others, the 

error in a frequent item might hinder system evaluation. Average RMSE and average MAE are 

used in these cases. The RMSE or MAE of each item is calculated separately and their average 

forms the system evaluation. 

In other cases the recommender system aims to predict user behaviour and create 

recommendations predicting which items the user will use. In these cases explicit rating feedback 
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is not available and RMSE and MAE are not suitable. Instead there are four possible outcomes, 

True-Positive, False-Positive, False-Negative and True-Negative. True-Positive is the case where 

the item was recommended and did used by the user, False-Positive is the case where the item 

was recommended but not used, False-Negative is the case where the item did not recommended 

and it used and True-Negative is the case where the item was not recommended and did not used 

by the user.  

In offline evaluation it is possible to take wrong measurements of False-Positives because the 

test set is extracted without presenting recommendations to the user. Thus there is no knowledge 

for a user not using an item because it is not preferred or because it is unknown to him. 

From these measurements the following metrics can be computed for the system. 

Precision P which measures the proportion of accurate positives over the total number of 

positives, given by. 

𝑃 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall R which measures the proportion of accurate positives over the total number of actual 

positives. The total number of actual positives is equal to true positives and false negatives. 

𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

False Positive Rate FPR which measures the inaccurate positives over the total number of actual 

negatives. The total number of actual negatives is equal to false positives and true negatives. 

𝐹𝑃𝑅 =  
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

For recommendations systems with a specific number of recommendations presented to the user 

it is efficient to measure how many of the recommended items where actually relevant. Thus 

precision is more suitable.  

In systems without a predefined limit on the number of recommended items precision-recall and 

Receiver Operating Characteristic ROC curves are more suitable. For Precision-recall curve the 
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precision and recall of the system is compared. In ROC curve the comparison is made between 

the true positive and false positive rate. Precision-recall considers the items that recommended 

and actually used while ROC considers the items that falsely have been recommended. 

In addition to rating prediction accuracy and usage prediction metrics there are cases where the 

recommendation system does not exclude irrelevant items or predicts ratings for items. Some 

recommenders aim to order the items from the most relevant to the least relevant in order to 

produce recommendations, typically referred as ranking. Evaluation of ranking systems is 

achieved in two ways either comparing the resulted order of ranked items to the actual order or 

measuring if the recommended order is useful to the user. 

Recommender systems do not exclusively aim in predictive accuracy. Coverage is typically 

described as the amount of items for which the recommender is able to produce 

recommendations. Catalog coverage is equal to the percentage of items that can be recommended 

compared to the total number of products available. 

In addition to catalog coverage, some systems do not produce recommendations for users with 

insufficient information. A similar metric to item coverage is the coverage regarding the number 

of users the system is able to provide recommendations. 

Cold start is a main problem especially for collaborative filtering algorithms where information 

about a new item or a new user are not available and thus the system is unable to produce 

recommendations. It is desirable for the recommenders to be able to cover new items and users 

to their recommendations. Moreover can also be measured the accuracy on these items. Recent 

papers suggest addressing the cold start problem with the aid of social networks [30, 32, 20] 

Another property affecting recommender systems performance is its scalability. As the number 

of items and users grow the systems requires more processing power and larger memory. In such 

cases many systems trade off accuracy and precision to be able to continue performing. An 

important measurement regarding scalability is execution time in various dataset sizes. 
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3 Literature Review 

Here we present several different e-commerce recommender system approaches and their 

advantages or disadvantages. We see recommendation systems utilizing data mining techniques, 

clustering analysis (in which the system focuses on customer’s comments and reviews), 

Dynamic Table based approach which takes into account customer’s life cycle for his 

recommendations, mining user-contributed photos and by using visual and UGC for user interest 

mining, Fuzzy logic, portal. One of the main conclusions is that the mentioned systems aim to 

enhance conversion rate (the buy part of recommendations) by providing more personalized 

recommendations. Further on the literature regarding E-commerce recommender’s gives and 

general overview focusing more on how recommender systems affect business. Also gave some 

insight regarding issues that might arise at the implementation of such systems in real life 

examples such as security. Next paper the reviewed literature regarding product recommendation 

qualifies some criteria.  

Furthermore description while also advantages and disadvantages of each technique is presented. 

Mentioned approaches are the classic Content Based filtering, Collaborative filtering, Hybrid 

(and ways it is applied), Social network based. Then a view of the e-vendors is mentioned which 

suggest that the cold start and long tail problems, even though addressed, still have room left for 

further research. Also it is stated that in the last year research regarding lowering computational 

complexity and increasing accuracy has drawn much attention. Researchers have demonstrated 

approaches that outperform state-of-the-art approaches in accuracy and scalability and that 

lowering complexity improves performance of RS. Findings and drawbacks are being presented 

and concludes with proposing some areas that need further research. What stood out is that not 

many systems take into account changes in user preferences and suggests research in Dynamic 

user behavior and ratings behavior.  
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3.1 Recommender Systems 

 

3.1.1 Collaborative Filtering for Implicit Feedback Datasets 

In [8] the research addresses cases where explicit feedback is unavailable and presents an 

algorithm producing recommendations based strictly in implicitly gathered information. The 

algorithm is categorized as Collaborative Filtering and more specifically as a Matrix 

Factorization implementation. Furthermore the algorithm provides explanation regarding the 

recommendations that produces.  

The dataset used consists of viewing history of customers from 300,000 top boxes of a digital 

television service. Each piece of information shows how many times a user watched a show 

during a four week period. 

In explicit feedback matrix factorization algorithms the matrix consists of user-item and their 

ratings. In this case the user-item pairs regard estimations for a user to prefer a specific item. 

This estimation is referred as preference. Preferences is set to 1 for each show the user have 

watched. Notating users with u, items with i, preference with p and the observed times a user 

watched a show as r the preferences is given by:  

𝑝𝑢𝑖 = {
1     𝑟𝑢𝑖 > 0
0     𝑟𝑢𝑖 =  0

 

Aiming to include cases where factors that led the user in watching the show other than personal 

preference, the equation is enhanced with a confidence variable. Increasing number of times a 

user watched a show lead in higher level of confidence that the user actually likes the show.  

Confidence is constructed using a predefined constant that sets the increase rate of each view. 

Notating confidence with c and the predefined constant with a, the confidence is given by: 

𝑐𝑢𝑖 = 1 + 𝑎 𝑟𝑢𝑖 
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The current implementation for confidence level is subject of experimentation as there are other 

possible ways that could fit better in other scenarios. Similar to traditional matrix factorization 

techniques the aim is to create user vector for each user and item vector for each item and extract 

recommendations using their inner product.  

In this case the cost function that is minimized to extract factors is the following: 

𝑚𝑖𝑛𝑥,𝑦 =  ∑ 𝑐𝑢𝑖(𝑝𝑢𝑖 − 𝑥𝑢
𝛵𝑦𝑖)2 + 𝜆 (∑‖𝑥𝑢‖2

𝑢

+ ∑‖𝑦𝑖‖2

𝑖

)

𝑢,𝑖

 

In addition to the different cost function compared to explicit matrix factorization, a different 

approach for the optimization process is also implemented. The approach used is referred as 

alternating least squares optimization. The idea is in each iteration to keep one vector static and 

re-compute the other lowering the value of the cost function while in the next iteration to 

alternate the static and re-computed vectors. After computing the user and item vectors, xu and yi 

respectively, the predicted user preference for an specific is given by their dot product. 

𝑝̂𝑢𝑖 =  𝑥𝑢
𝑇 𝑦𝑖 

Another useful feature in this implementation is the ability of the system to provide explanations 

as to why each item was recommended. This is often a desired feature for recommender systems 

because helps the user understand the reasoning behind the recommendations presented to him. 

For the evaluation of the system precision metrics deemed inappropriate due to the inability to 

know user feedback over recommendations. The methodology used for evaluation of the system 

is referred as mean percentile ranking. Each recommendation listed is ordered and assigned a 

percentile ranking. Ranking with 0% the ones that the systems predicts to be more preferable by 

the user. Notating with rank the percentile ranking of an item in the test period the mean 

percentile ranking is given by: 

𝑟𝑎𝑛𝑘̅̅ ̅̅ ̅̅ ̅ =  
∑ 𝑟𝑢𝑖

𝑡  𝑟𝑎𝑛𝑘𝑢𝑖𝑢,𝑖

∑ 𝑟𝑢𝑖
𝑡

𝑢,𝑖
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To consider the result accurate lower percentile mean is required. The algorithm is compared to 

two other models, one that produces recommendation based on popularity and an item-item 

collaborative filtering algorithm. The evaluation showed that this methodology produced the best 

results among the three. 

The proposed implementation performs well and sets the ground rules for dealing with implicit 

feedback recommenders. The core idea in the implementation presented in this dissertation is 

based on this algorithm. The matrix is being constructed using a similar equation to map user 

behavior to user item preference while similar to this alternating least squares and same cost 

function is used for creating the user and item factor vectors. In addition, researcher based on this 

approach applied various techniques and methods in order to further improve the model such as 

[13,36] 

 

3.1.2 Time-Dependant Recommendation based on Implicit Feedback 

In [15] we see an implementation of a context-aware system that aims to take into account time 

as well as depending strictly in implicit feedback for producing recommendations. The main 

assumption is that user preferences mutate over time but they also tend to repeat. For the system 

to include time for producing recommendations, a micro-profiling technique is implemented. 

The algorithm is tested using information which consist of two years’ worth of listening habits 

from 338 random users of the last.fm.   

The main concept is to divide a user’s profile into micro profiles. This is done in an effort to 

better describe user taste during a specific time of the day. Similarly suggests that micro profiles 

can be used to describe longer time intervals such as days, months or years. A key challenge to 

this implementation is to effectively distinguish representative time intervals from user behavior. 

Another challenge presented is that time interval might differ amongst users. Though these 

challenges are considered out of scope of this research. The goal of this research is to test if 

micro profiling brings better results in a collaborative filtering algorithm. 
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Furthermore, this paper proceeds to discover the best way to partition the customer information. 

The results showed that an effective way of segmenting monitored customer behaviour can 

increase the accuracy of a collaborative filtering algorithm. Specifically better results were 

observed for hour and day segmentation. 

This approach regarding recommendations dictate that context and time are important for the 

accuracy of the system. Taking into consideration all the available information might hinder the 

accuracy of the system, especially when recommenders aim to predict short-term preferences. 

 

3.1.3 An Intelligent Product Recommender System in an e-Store 

In [16] the proposed system aims in creating recommendations without using customer ratings. It 

is described a complete system which incorporates collaborative and non-collaborative 

algorithms on its various stages. The system consists of three parts. The first part is responsible 

for creating customer clusters. The second is responsible for creating maintaining and update the 

customer profiles. And the third part is responsible for the presentation of the recommendations 

to the customer 

Clustering the customers is achieved using their preferences. Preferences are provided by the 

profiling agent. Customers with similar preferences are grouped together and then collaborative 

filtering techniques produce a ranked list of suggestions that are being fed to the profiling 

algorithm. 

In the second part of the system the customers behaviour is monitored and each preferred items 

is being added to the customer’s personal preference record. In addition this agent of the system 

is responsible for ranking the items suggested by the clustering part of the system. Lastly is 

responsible for extracting customer’s preference criteria from the observed behaviour. 

The generic algorithm implemented in the proposed system considers item popularity on the 

users with matching preference criteria. Another interesting feature implemented in this approach 

is mutation. Mutation randomly transfers a set of irrelevant products to the recommendation list. 
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In cases the user prefers the mutated recommended items reveals that the system produces false 

negatives and enables profiling algorithm to recalculate user preferences taking into 

consideration the added information. It is a way of dynamic self-learning algorithm based on 

user feedback. 

In this paper it is described a hybrid algorithm of collaborative filtering with user profiling which 

is mostly implemented in content-based filtering algorithms. There are key features that improve 

the overall performance of a recommender system like the self-learning mutation technique. 

Though the accuracy and performance of the systems is not certain because the evaluation was 

performed on randomly created data and on only five customers. Real world applications scale a 

lot more than that. The fact that the system is able to produce accurate predictions on a small 

number of users does not guarantee that the average performance will remain taking into 

calculation some thousands of customer’s behaviour. Further evaluation of the system is required 

to monitor the performance on large datasets. 

 

3.1.4 A product recommendation system in e-commerce 

In [17] the paper introduces a hybrid algorithm implementing collaborative filtering and 

association rules for producing recommendations. It also regards implicit feedback information 

and presents an approach of transforming transaction information to an implicit rating system. 

Furthermore it presents a way in which sequence recognition can improve the systems 

performance.  

The collaborative filtering utilizes weighted cosine similarity on user ratings. Cosine similarity 

CS between user 1 and user 2 is given by the type: 

𝐶𝑆𝑟1,𝑟2 =  
𝑑𝑜𝑡(𝑟1, 𝑟2)

‖𝑟1‖ ‖𝑟2‖
 

As r is notated the ratings of the customer’s. Furthermore the paper suggests improving the 

method by including purchased item frequency of the rated items. This methodology is referred 

by the authors as implicit rating. The system gets information from user’s ratings and 
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transactions and transforms transactions in a vector space model. It calculates the item frequency 

of a user item pair and the inverse item frequency of that item in order to create the implicit 

rating of the user regarding a specific item. Item frequency is the frequency of an item purchased 

by a user. The calculation of item frequency is achieved in two ways. Notating as n the 

frequency of item i purchased by the user u the first method calculates IF with: 

𝐼𝐹𝑢𝑖 =
𝑛𝑢,𝑖

∑ 𝑛(𝑢, 𝐼)𝐼
 

In contrast the second method calculates IF with: 

𝐼𝐹𝑢𝑖 =
𝑛𝑢,𝑖

𝑚𝑎𝑥𝑢,𝐼
 

 

Notating item frequency with IF, user with u, item with i, inverse item frequency with IIF, U the 

total number of users and Ui as the total number of customer purchased a specific product, then 

the Inverse Item frequency is given by: 

𝐼𝐼𝐹𝑖 = 𝑙𝑜𝑔
1 + 𝑈

𝑈𝑖
 

And the implicit rating ir of a user for an item ig given by: 

𝑖𝑟𝑢𝑖 =  𝐼𝐹𝑢𝑖 𝐼𝐼𝐹𝑖 

Furthermore provides a way calculating item frequency for new users where observations are not 

available. The item frequency for new users is given by: 

𝐼𝐹𝑢𝑖 = 𝑙𝑜𝑔
𝑈𝑖

1 + 𝑈
 

The system is designed to produce additional recommendations using purchase history for 

extracting association rules. Measuring the support and confidence found in the purchase history 
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of users the system is able if a user is likely to buy a product based solely on his previous 

purchases. 

Lastly, the system considers sequence recognition. It records the order of purchased items and if 

a recommended item is not sold after the specific sequence of previously bought items it is not 

included in the recommendations. 

Experimental results demonstrate the superiority of explicit rating precision in contrast to 

implicit. Though the combination of explicit and implicit provide slightly better results than 

standalone explicit rating regardless the method used for including item frequency. In addition 

recall is increased by implementing the association rule recommendations in the system. 

Even though the improvement of accuracy using a combination of implicit and explicit rating is 

not big it still is an improvement. Moreover the paper presents a system that produces multiple 

recommendations, some items are recommended via collaborative filtering and others from 

association rules. Lastly points out a way in which sequence analysis in product purchases can 

benefit recommendation systems.  

 

3.1.5 A case study in a recommender system based on purchase data. 

In [18] we have a recommender system used by salesperson in a physical store as a tool for 

recommending products to the customers rather than the usual implementation of an online 

recommender. The algorithms used in this paper consider purchase history and association rules 

to produce its recommendations. Moreover the results point out the importance of context aware 

recommender systems. 

The information used for the training of the proposed model use a user item matrix. Each row of 

the matrix includes purchase information of a customer for each item over a specific time period. 

For evaluating the hypothesis that context can increase prediction accuracy, three algorithms 

have been implemented and evaluated. The first algorithm implements and item-based 

collaborative algorithm, the second implements a matrix factorization algorithm using singular 
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value decomposition and non-negative matrix factorization and the third one creates a bigram 

matrix based on association rules mining.  

Each algorithm takes as input the purchase history of customers either with a time limitation or 

not and returns a list of recommended items. The time limitation that was used was a two week 

period. So in the case were there is no time limitation the algorithms need to extract 

recommendations using all the available information from this day and before while when using 

two weeks history a portion of information worth of two weeks’ time is used. 

Evaluating the three algorithms on the two different time settings showed that the most accurate 

algorithm when using full purchase history is matrix factorization algorithms in contrast to the 

cases of two weeks limit imposed on data association rules present the best results. Comparing 

performance of the same algorithm in the different time limitation shows that all four algorithms 

have been affected positively. Though it is noted that in the case of SVD the difference is 

considered insignificant since it is no more than 0.02%.  Association rules presented an increase 

in accuracy of 3% to 4%. Item based collaborative filtering also benefits significantly with 

ranges from 3.5% to 4%. Lastly non negative matrix factorization benefit ranged from 1% to 

approximately 2%. It is observed that matrix factorization techniques do not benefit greatly from 

time awareness in the input data.  

The paper then proceeds in presenting a business oriented approach taking into account 

knowledge of the specific domain. The data consider purchase history of a store with home 

improvement products. The customers purchasing history of the store show a significant pattern 

in their behavior. It is observed that at times customers buy only standard not expensive things 

while at some short period they spend more buying specific products. This is explained by the 

company that at these cases the customers have started working on a specific renovation project 

and they need a collection of products to finish. The aim of the proposed approach is to 

effectively detect when a customer is in the middle of a project and be able to recommend 

relevant products. Projects are identified as short periods of no more than two weeks with high 

purchase activity.  
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The evaluation of the three algorithms on the context aware dataset shows that all three of them 

increased their accuracy thus proving the importance of the context for a recommendation 

engine.  

The proposed system is considered successful and relevant to the goals of this dissertation 

because manages to produce recommendation using solely purchase history which falls in the 

category of implicitly gathered information, incorporated context and time for improving 

recommendation algorithms accuracy, moreover describes a way of incorporating context in 

specific domain and lastly demonstrates the importance of purchase history and association rules 

since the algorithm with highest the accuracy was the bigram matrix created from association 

rule mining. 

 

3.1.6 Logistic Matrix Factorization for Implicit Feedback Data 

In [14] the research is also focused on implicit feedback systems and matrix factorization. 

Moreover the paper demonstrates how the model can scale using technologies like Hadoop and 

Spark. For evaluation the proposed algorithm is being compared to the traditional Implicit 

Feedback Matrix Factorization presented in [8] and a popularity algorithm. 

The algorithm concerns a probabilistic approach of implicit matrix factorization. The approach is 

similar to [8]. It also infers to lower rank vector that model user and item factors. The difference 

is that instead of trying to minimize the cost function mentioned, this algorithm implements a 

probabilistic model. 

 The preferences of users towards items can be described using a logistic function taking into 

account the sum of the inner products of user and item factor vectors. Moreover it is also affected 

by user and item biases. So the logistic function is given by 

𝑝(𝑙𝑢𝑖 |𝑥𝑢, 𝑦𝑖, 𝛽𝑢, 𝛽𝑖) =  
exp (𝑥𝑖𝑦𝑖

𝑇 +  𝛽𝑢 + 𝛽𝑖)

1 +  exp (𝑥𝑖𝑦𝑖
𝑇 +  𝛽𝑢 + 𝛽𝑖)
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Notating with lu,i the interaction of a user u with item i, βu βi  are the user and item biases 

respectively and xu and yi are the user and item factor vectors respectively.  

Users will tend to have differences among them concerning the number of items they interact 

with. User biases models this behaviour for each user. Similarly some items will be more popular 

than others and are being preferred by a wider range of customers while others only preferred by 

small groups. 

In this approach it is also utilized the confidence variable in the same manner it is implemented 

in [8] given by: 

𝑐 = 𝑎 𝑟𝑢𝑖 

 

The likelihood of observations given the user and item factor vectors and biases is given by: 

𝐿(𝑅 |𝑋, 𝑌, 𝛽) = ∏ 𝑝(𝑙𝑢𝑖 | 𝑥𝑢, 𝑦𝑖, 𝛽𝑢, 𝛽𝑖)
𝑎𝑟𝑢𝑖  (1 − 𝑝(𝑙𝑢𝑖 | 𝑥𝑢, 𝑦𝑖, 𝛽𝑢, 𝛽𝑖))

𝑢,𝑖

 

In addition it uses Gaussian priors on user and item factor vectors for regularization. The final 

logistic function after further processing is given by: 

log 𝑝(𝑋, 𝑌, 𝛽 | 𝑅) =  

∑ 𝑎𝑟𝑢𝑖(𝑥𝑢𝑦𝑖
𝑇+𝛽𝑢+𝛽𝑖) − (1 + 𝑎 𝑟𝑢𝑖) log(1 + exp(𝑥𝑢𝑦𝑖

𝑇+ 𝛽𝑢 + 𝛽𝑖)) −
𝜆

2 
‖𝑥𝑢‖2 −

𝜆

2𝑢,𝑖 ‖𝑦𝑖‖
2  

Finally the goal is to find the user and item vector as well as biases that maximize the log 

posterior. In a similar fashion were the alternating least squares where used for minimizing the 

cost function, here for finding the maximum an alternating gradient ascent procedure is 

implemented.  

Furthermore due to the fact that iterations scale linearly with the increasing number of users and 

items the process is limited to small datasets. In situations with larger dataset it is suggested to 

sample fewer negative samples alongside reducing the “a” parameter of confidence equation. 
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The “a” value in confidence serves as a balance between negative, meaning zero interaction, and 

user item interaction, because the bigger the value of “a” is the more weight is given to the 

observed interactions.   

Another novelty in the systems is that in each iteration in order to increase the user or item vector 

the step size can be chosen implementing AdaGrad. Notating with t the iteration and as xu the 

user factor vector, the next vector is given by: 

𝑥𝑢
𝑡 =  𝑥𝑢

𝑡−1 +  
𝛾𝑔𝑢

𝑡−1

√∑  𝑔𝑢
𝑡′2𝑡−1

𝑡′= 1

 

 

In each iteration of the alternating gradient ascent procedure the computation of the gradient for 

all factor vectors. Because each gradient consists of functions related to a specific user item pair 

this makes the proposed implementation suitable for MapReduce programming paradigm. 

For the scaling using MapReduce paradigm the preference matrix R is being divided into K x L 

partitions with K rows and L columns where K is smaller than the total number of customers and 

L smaller than the total number of items. Additionally the user and vectors are also being divided 

to the number of rows the R divided, K, and to the number of columns the R divided, L, 

respectively. The following equations compute the user factor vector and bias during the 

iterations where item factor vector is fixed. 

𝑢𝑢𝑖 = 𝑎𝑟𝑢𝑖𝑦𝑖 − 
𝑦𝑖(1 + 𝑎𝑟𝑢𝑖)exp (𝑥𝑢𝑦𝑖

𝑇 + 𝛽𝑢 + 𝛽𝑖)

exp (𝑥𝑢𝑦𝑖
𝑇 + 𝛽𝑢 + 𝛽𝑖)

 

 

𝛽𝑢𝑖 = 𝑎𝑟𝑢𝑖 −  
(1 + 𝑎𝑟𝑢𝑖)exp (𝑥𝑢𝑦𝑖

𝑇 + 𝛽𝑢 + 𝛽𝑖)

1 +  exp (𝑥𝑢𝑦𝑖
𝑇 + 𝛽𝑢 + 𝛽𝑖)

 

 

In the same way the computation of item factor vector and bias is being calculated on the 



38 

 

iterations that user vector is fixed. During the reduce phase all the user vector and biases are 

aggregated and when all the computations that take place on user vector or items regarding 

iteration are finished the system proceed into updating the user or item factor vector using the 

equation presented. 

The evaluation of the system made using the same metric used in the classical implementation. 

Again the reason behind the certain evaluation is the limitation imposed by nature of the problem 

where negative feedback from users regarding items is not existent in an implicit feedback 

dataset. Evaluation of the methodology showed that the logistic matrix factorization model 

perform slightly better that classical implicit matrix factorization. Another positive characteristic 

of the logistic matrix factorization is that presented better results with taking into account less 

latent factors. Computation for less latent factors has many advantages in terms of execution 

time and reducing resource cost of the algorithm. Moreover increasing latent factors requires 

more interaction observations in order to produce optimal user and item vectors. 

The proposed algorithm is a successful experiment since it manages to outperform even slightly 

the cornerstone of implicit feedback matrix factorization algorithm. Moreover an interesting 

characteristic provided is the use of parallelization for cases where the system scaled greatly. 

Lastly the proposed algorithm is actually used by Spotify in order to produce recommendations. 

 

3.1.7 Life-stage Prediction for Product Recommendation in E-commerce 

In [19] the presented system takes into consideration the life stage of the customers. More 

specifically considers products for babies and based on customer’s choice of products tries to 

infer in which life stage he/she is (newborn, 1-3, etc.) and recommends the related products. It is 

an approach which relates to dynamic user profiling and aims to provide personalized 

recommendations. 

It is stated in the paper that according to sociologists and marketing researchers there is a strong 

relevance between the life stage of a user and his preferences regarding items. The proposed 
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system incorporates a methodology for discovering the life stage of the customer and using this 

knowledge with a probabilistic model for recommendations.  

Customers past purchase sequence is used with a new Maximum Entropy Semi Markov model, 

proposed by the authors, in order to perform stochastic life stage segmentation. The probability 

of life stage at time t depends on the previous life-stage, the time the user was in the previous 

stage and his behavior sequence.  Notating the user behavior sequence as X, life-stage 

probability as y and duration of a life stage as d, the system aims in finding the best life stage 

sequence and corresponding duration of each. 

{𝑦1, … , 𝑦𝑘, 𝑑1, … , 𝑑𝑘} = argmax
𝑘,𝑑𝑦,𝑦𝑘

∏ 𝑃(𝑦𝑡 |𝑦𝑡−1, 𝑑𝑡−1, 𝑋𝑡)𝑃(𝑑𝑡 |𝑑𝑡−1)

𝑘

𝑡=1

 

 

As lmin and lmax is denoted the minimum and maximum time of life stages as they were defined 

by domain experts. For the estimation of the probability a multinomial logistic regression model 

is implemented.  

The features of the classifier that the system use are categorized as follows. Category features, 

instead of using the ids of the products interacted with the customer as features, the category ids 

associated with those product are used. This is done due to possible sparsity products and 

because the store change its items frequently. Queries, user’s search queries provide valuable 

information about the current life stage of the customer. Product properties, products are 

described in the system using feature-value pairs. Values of the product features many times 

concern specific age. Product title, titles also many times provide information regarding age that 

are used for. Temporal effect of the features, the described features provide different 

interpretation of customer’s current life stage if the time where they were collected is taken into 

consideration.  

For recommendations the paper proceeds in calculating the probability of a user buying a product 

for a specific stage. Denoting “a” the age of the baby, with j the item for which we want to 
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compute prediction for, 𝑃(𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗) the probability the customer with purchase the item and 

𝑃(𝑎 |𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗) the probability of purchasing during age “a”. This probability is calculated by: 

𝑃(𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗 , 𝑎) = 𝑃(𝑎 |𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗)𝑃(𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗) 

Then the products are ranked using the equation: 

𝑃(𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗) ∫ 𝑝(𝑎|𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗)𝑝𝑢(𝑎)𝑑𝑎 

For the computation of 𝑃(𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗) the following logistic regression model is used: 

𝑃(𝑝𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑗) =
1

1 + 𝑒−𝑤𝑇𝑥
 

 

During evaluation the system was tested gradually adding the features presented in order to 

examine the impact each of them had on the accuracy of the algorithm. Item properties, 

customers search queries and product titles improved the accuracy of the algorithm yet slightly. 

Temporal effect of the features had the biggest impact on accuracy triggering an increase of 

more than 5%. 

The proposed approach successfully incorporates time in the specific domain increasing the 

accuracy of the recommendations. The system similarly to other papers not only utilizes implicit 

information but also is based on the idea that customers preferences and needs change over time. 

It goes one step further implementing an association of the customers’ needs with a specific 

event in his life.  

 

3.1.8 Socially enabled Preference Learning from Implicit Feedback Data 

In [20] the aim of the research is to implement a matrix factorization model on an implicit user 

item preference matrix enhanced with social information. 
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Notating users u, items i, xu the user factor vector, yi the item factor vector, auk is the weight of 

the influence of the friend k over the specific user and as S the social friendship matrix. Then for 

including the social network into the algorithm the cost function is given by: 

F𝑢𝑖 = 𝑥𝑢𝑦𝑖 +  ∑
𝑎𝑢𝑘

| 𝑆𝑢|
 𝑥𝑘𝑦𝑖

𝑘∈𝐹𝑢

 

Given this cost function the authors define an objective function with respect to user factor 

vector x, item factor vector y and the social influence weight as: 

min
𝑥,𝑦,𝐴

𝐽 =  ∑ 𝑐𝑢𝑖

(𝑖,𝑗)∈𝛶

(𝑥𝑢𝑦𝑖 +  ∑
𝑎𝑢𝑖𝑥𝑢𝑦𝑖

|𝑆𝑢|
𝑘∈𝐹𝑢

− 𝛶𝑢𝑖)2 + 𝛺𝑥,𝑦,𝐴 

As A is notated the defined matrix  

𝐴𝑢𝑘 = 𝑎𝑢𝑘 , ∀𝑢 ∀𝑘 ∈ 𝑆𝑢, 0 

As Ω is notated the regularized term given by: 

𝛺𝑥,𝑦,𝐴 = 𝜆1 ‖𝑥‖𝐹
2 + 𝜆2‖𝑦‖𝐹

2 + 𝜆3‖𝐴‖𝐹
2  

The c variable notated is a predefined weight which serves the purpose of adding weight to the 

loss function when computing over observed interaction. 

Furthermore in the presented approach the Gauss-Siebel approach is being used for the 

optimization of the function. In each iteration two of the three matrixes are being fixed while the 

third is updated.  

This proposed approach evaluated against four approaches. The Implicit Matrix factorization 

model described in [8] referred as iMF. The recommendation system proposed in [21] referred as 

LLA which takes into consideration social and contextual information which recommends 

friends and items to the user. Another social recommender described in [22] which penalizes the 

l2 distance between friends in the objective function. The fourth approach which used for 

evaluating is described in [23] and incorporates social trust information in an optimization 

process of a loss function regarding explicit feedback referred as Trust Ensemble. 
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The results of the evaluation showed that it outperformed all the algorithms except the classic 

implementation of Implicit Matrix Factorization. Thus regarding only social recommenders it did 

presented the best results.  

 

3.1.9 A hybrid online-product recommendation system: Combining implicit 

rating-based collaborative filtering and sequential pattern analysis 

In [24] the proposed system recognizes the problem that many ecommerce stores have regarding 

insufficient explicit information. The system is referred as HOPE and aims in constructing 

ratings for items based on transaction history of the users. Furthermore investigates the possible 

combination of collaborative filtering algorithm and sequential pattern analysis.  

The method proposed for combining collaborative filtering and sequential pattern analysis is to 

calculate preference of a user regarding an item with CF and SPA separately and then proceed by 

calculating a weighted aggregation of the two results and creates the final prediction for a user 

item pair. 

For the collaborative part of the approach the first task is to construct and user item rating matrix 

derived from the transaction history. The preference AP of a user u for an item i is given by: 

𝐴𝑃𝑢𝑖 = ln (
𝑡𝑢𝑖

𝑇𝑢
+ 1) 

As Tu is notated the total number of transactions for a specific customer while a tui the number of 

transactions of a user which contain the item i. Due to the fact that the provided equation does 

not take into consideration various characteristics of the item that influence items purchase 

frequency. Moreover the number of transaction cannot provide a solid understanding of a user’s 

preference since it can lead into misinterpretation if not compared to the behavior of other users. 

Thus the author proposes the user of relative preference RP as given by: 

𝑅𝑃𝑢𝑖 =
𝐴𝑃𝑢𝑖

max
𝑐∈𝑈

(𝐴𝑃𝑐𝑖)
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Where U denotes the users that purchased item i. Furthermore the final implicit rating is given by 

the following equation: 

𝐼𝑅𝑢𝑖 = 𝑟𝑜𝑢𝑛𝑑 (5 𝑅𝑃𝑢𝑖) 

In the final step the relative preference is multiplied and rounded up to create a rating set ranging 

from 1 to 5. 

For measuring user similarity the proposed system proceeds in computation of Pearson 

correlation coefficient, cosine similarity and distance measure. The three approaches are 

evaluated to derive the algorithm that brings the best result in the specific domain and dataset. 

Then the system proceed in the prediction of the user preference using ratings from the k most 

similar users. The prediction is computed with: 

𝐶𝐹𝑃𝑃𝑎𝑖 =  𝑅𝑎
̅̅̅̅ +

1

∑ | 𝑠𝑖𝑚(𝑎, 𝑏)𝑘
𝑏=1 |

 ∑ 𝑠𝑖𝑚(𝑎, 𝑏)(𝑅𝑏𝑖 −  𝑅𝑏
̅̅̅̅ )

𝑘

𝑏=1

 

In the equation is denoted with k the number of similar users used, which is constant tested in 

various values, a and b used to describe two different users and sim(a,b) is the similarity 

calculated in one of the three methods applied. 

For sequential pattern analysis preference score the method considers the sequences of 

transactions of all users except the one calculating the prediction for. The derived sequences are 

compared to all subsequences of the target user in order to extract item recommendations. 

Calculation of the sequential pattern analysis preference score is done with the equation: 

𝑆𝑃𝐴𝑃𝑃𝑎𝑖 =  ∑ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑠
𝑖

𝑠∈𝑆𝑈𝐵

 

In this equation as SUB is denoted the set of the users subsequences and as Support the support 

of the item in the specific subsequence s. 

The final preference score FPP for the user item pair is calculated using the normalized CFPP 

and SPAPP and the constant a as weight in the following manner: 
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𝐹𝑃𝑃𝑢𝑖 = 𝑎 𝑁𝐶𝐹𝑃𝑃𝑢𝑖 + (1 − 𝑎)𝑁𝑆𝑃𝐴𝑃𝑃𝑢𝑖 

A series of experiments were conducted first the experiment concerned with discovering the 

more suitable similarity function for calculating user similarity during collaborative filtering part. 

Next experiments were conducted to discover the optimal minimum support to be used for 

sequential pattern analysis. The next experiment aimed in discovering the weight value that 

brings the best final results when imposed on the CF and SPA preferences score during final 

preference score computation. Having discovered the optimal values for the system HOPE was 

compared to Collaborative filtering and Sequential Pattern Analysis recommendations in 

precision, recall and F1.  

The results reported by the experiments show that the use of implicit rating is an acceptable 

solution to insufficient explicit feedback. Furthermore the proposed implementation scored 

significantly higher in precision, recall and F1 though that is not case with accuracy comparison 

between HOPE and SPA recommendations. 

  

3.1.10 Resolving data sparsity by multi-type auxiliary implicit feedback for 

recommender systems. 

In [25] research is focused in implicit feedback information and the problem of data sparsity that 

collaborative filtering algorithms suffer from. Data sparsity problem regards dataset with a big 

number of users and items and small number of interactions between them. This problem hinders 

the accuracy of CF models especially neighborhood recognition approaches where in such cases 

are unable to accurately cluster customers and items.  

In the specific paper aims to address the data sparsity problem by incorporating various 

implicitly gathered information as opposed to solely using purchases. The various implicit 

information are referred as multi-type auxiliary data. As auxiliary data are considered different 

ways that the user interacts with items. Search queries for items, viewing, add to wishlist, share 

are some examples of candidate auxiliary data. 
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The methodology at first adopts a regression model to examine the correlation of multi-type 

auxiliary data with the target data. As target data, or positive feedback, is referred the purchase 

of the item from the customer. In the next phase the neighbors of the current user are being 

selected. The selection is performed by comparing the created auxiliary feedback of each 

possible neighbor with the specific user’s positive feedback. Last it is implemented a ranking 

model that incorporates both auxiliary and initial data. 

Notating with A the auxiliary data, xa the specific auxiliary piece of information, β0 and βα are 

the coefficients to learn and y is the label for the target feedback the logistic regression is 

formalized by: 

           (1) 

𝑦 = {
  1   𝑖𝑓 𝛽0 +  ∑ 𝛽𝑎𝑥𝑎 > 0

|𝐴|

𝑎=1

0                                               
    

 

The data used for evaluating auxiliary data types come from Shobazaar and Xing. Shobazaar is a 

social fashion while Xing are gathered information regarding job ads users. In the case of 

Shobazaar eight different types of auxiliary data where evaluated, product clicked from archive, 

product details viewed in archive product marked as wanted from archive, pixel initialized, pixel 

order, pixel order without reference, product clicked in details, product marked as wanted. In 

Xing the three auxiliary types of data evaluated, clicked on a job posting, bookmarked a job, 

removed a job. 

The results revealed strong correlation of two specific types of auxiliary data with the purchase 

of the item in both datasets. In Shobazaar clicking an item and pixel initialized are the ones 

strongly related. Similarly in Xing click a job posting and bookmark are also strongly correlated 

with target feedback.  Another two types have positive correlation while some are not related in 

any way with purchase of an item in the case of Shopbazaar. In the case of Xing the remaining 

type of data which concerns the removal of job ad is associated negatively. 
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For generating the new feedback dataset from auxiliary information two ways are proposed. The 

first is by using a linear regression. Using (1) and the confidence calculated by the following 

equation. 

𝑐𝑢𝑗 = 𝛽0 +  ∑ 𝛽𝑎𝑥𝑎
𝑢𝑗

|𝐴|

𝑎=1

 

As 𝑥𝑎
𝑢𝑗

 is notated the score calculated from the user to the specific item using auxiliary 

information. 

The second way is through multi-dimension similarity. In this approach each item is compared to 

the items purchased by the customer using cosine similarity. 

In the next phase of the approach the paper proposes a model which incorporates auxiliary and 

original data for ranking the items. The approach is a variant of Bayesian Personalized Ranking 

model with Generated data and confidence. The model concludes in the following equation: 

𝑙𝑛 𝑝(𝜃 | >𝑢) = ∑ 𝑐𝑢𝑖𝑙𝑛𝜎(𝑝̂𝑢𝑖𝑗) − 𝜆𝜃‖𝜃‖2

(𝑢,𝑖,𝑗)∈𝐷

  

With θ is notated the mode parameters, D is a set of triplets of user u purchased i but not j (u,i,j), 

𝑝̂𝑢𝑖𝑗 is notated the ranking difference between the pairs of specific user u and item i,j and λθ are 

the regularization that prevents over-fitting of the model. For maximization the author proposed 

the minimization of the negative of the same equation via Stochastic Gradient Descent. 

For the evaluation of the system the proposed approach were compared to with four other 

systems on both datasets. The results report that the GcBPR outperformed all the other 

approaches. The approach with the lowest score is the one without implementing auxiliary data 

at all. Notably the method outperforms significantly even the second best approach. The increase 

on average is up to 67.38% regarding Shobazaar dataset and 9.74% for Xing.  

The proposed methodology presents an interesting approach regarding use the of implicit 

information firstly due to the fact that implements an evaluation of the implicit feedback against 
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the purchased items of a user where in most cases these systems aim to predict purchases. And 

because it demonstrates an effective way incorporating the auxiliary implicit feedback in a 

recommendation prediction model. 

 

3.1.11 A Recommendation System using Association Rules and Collaborative 

Filtering 

In this approach a hybrid approach for a recommendation system incorporating collaborative 

filtering as well as association rule mining algorithms. Furthermore the data used in the current 

research are also implicitly gathered. The goal is to effectively predict which sellers the customer 

is going to visit. Lastly as the recommendation engine is planned to run on mobile devices it 

incorporates the devices GPS and takes into consideration the proximity of the seller to the 

customer for the final recommendation. 

During the first phase of the system the association rule mining part takes place. Using K-means 

based algorithm for rule mining predicts categories that might be of interest to the customer. The 

Apriori algorithm is used for extraction of relevant rules.  

During the next phase the collaborative filtering part is implemented. In this phase the system 

recommends items unused by the customer. The prediction of CF is achieved in synergy with the 

rules derived from the previous phase. The similarity between users is computed in regard with 

their past choices on sellers. Furthermore Pearson correlation coefficient was used to measure 

similarity among users. 

The ratings of similar users over unused by the specific user items are used for creating the 

recommendations. The presented implementation does not aim into improving the algorithm of 

recommender systems rather than implement a combination of the two approach in the context of 

a mobile app recommending sellers.  
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3.1.12 Collaborative filtering with initialized factor matrices 

In [26] the paper aims in improving the accuracy of classic collaborative filtering algorithms by 

addressing the problem of data sparsity in datasets. More specifically it deals with the 

optimization of matrix factorization technique. 

Matrix factorization aims at creating user and item latent factor matrices and use them to predict 

unknown values on a user item matrix. Approaches like Singular Value Decomposition require 

the missing values of the matrix to be filled with averages before creating the user item latent 

factor matrices. In other approaches such as the one used in our implementation and those in 

papers [8], [14] the approach of matrix factorization involves randomly initializing the user item 

factor matrices and implementing a repeated optimization method on the matrices. In each 

repetitions the matrices are being updated minimizing the error of a cost function. 

In the later approach of matrix factorization the random initialization of the factor matrices is not 

optimal for the optimization method. The aim of the proposed approach is to present another way 

for initialization of factor matrices and thus lead to increased accuracy of the algorithm. For this 

task the implementation of SVD is proposed by the authors. 

In the first phase of the methodology latent user and item factor matrices are extracted from the 

user-item matrix. The initialization method consists of the following steps. First additional values 

are being filled in the original user-item matrices where the rating is unknown. This is 

accomplished by using a method such as averaging the known user ratings for the specific item.  

There have been tested eight approaches regarding filling the unknown rating values prior to 

SVD. These include using the median rating of user, the median rating of item, the total median 

of items, the average of user and item median, the average ratings of the user, the average ratings 

of the item, total average of all ratings and the average from user and item averages. 

For evaluation of the approach the proposed approach was tested against a randomly initialized 

matrices matrix factorization algorithm with the same optimization method. The show report that 

the method improved the system. Specifically it decreased the RMSE by 0.06. In addition the 

initialization of the factor matrices caused the optimization method to require less iterations to 
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find the matrices with the less error. Especially it is reported that for cases where the number of 

factors to discover is increased the proposed method was twice as fast compared to the non-

initialized algorithm.  

The approach describes a method of increasing accuracy and overall performance for discovering 

latent factor models. What it should be noted though is that taking average of ratings for filling 

the user-item matrix before SVD requires further examination and testing over other possible 

alternatives that could further increased performance. 
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4 Recommender System Design 

4.1 Overview 

Our approach concerns a product recommendation system in the context of e-commerce. It is a 

recommendation approach based solely on implicitly gathered information. The main technique 

used is a matrix factorization algorithm. In addition, association rule mining is used for 

optimization of the system, as well as providing extra recommendations in parallel to the main 

method [27]. 

 

4.2 Approach 

4.2.1 Implicit Matrix Factorization 

The main algorithm of our system is an implementation based on the work of [8] . It regards 

implicit feedback instead of commonly used ratings. For the implementation of the algorithm the 

raw data need to be transformed in a user-item matrix with values representing the implicit rating 

associated with the pair. As described our dataset provides observations over different visitors’ 

behavior. Thus, the first stage of the algorithm involves preprocessing raw data to transform 

them in a user-item matrix. 

In [8] the dataset used concerns visitor transactions and the user-item matrix required for matrix 

factorization is constructed by aggregating the number of times a customer viewed a specific 

show. A user’s interest towards a show is inferred by the number of times he viewed the show. In 

our case we infer user interest towards an item from his behavior. The difference of our system is 

that instead of one measurement we consider three. Thus interaction score includes all three 

observations and is given by: 

𝑟𝑢𝑖 = 𝑣𝑢𝑖 + 𝑏𝑢𝑖 + 𝑡𝑢𝑖    (1)   



51 

 

The number of times the visitor viewed the item is notated as v, the number of times the visitor 

added the item to his cart is notated as b and the number of times the visitor bought the item as t.  

During the purchase process the visitor usually navigates through several items before making 

his decision. While browsing products it is possible that he views products that he will then 

exclude for a number of reasons, one being that he did not like them. Viewing items, even 

though being an indication that the visitor wanted to learn more about the specific item does not 

always mean that the customer prefers it. On the other hand, adding to the cart and transaction 

are strong indications of preference, since the visitor did actually decide to purchase them. Thus 

the three observations have different weight regarding visitor’s preference over an item. Taking 

into consideration the above weighting of the observations is required the interaction score is 

transformed into: 

𝑟𝑢𝑖 = 𝑣𝑢𝑖 + 𝑏𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑏𝑢𝑖 + 𝑡𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑡𝑢𝑖  (2)   

As tweight we denote the transaction weight and as bweight the “add to cart” weight. After validation 

we defined transaction weight to be equal to 100 while add to cart to be 50. It was considered not 

giving additional weight to the add to cart since for the customer to proceed to a transaction it is 

required to add the item to cart. It is included because the cases where the customer added the 

item to the cart but did not complete the transaction are also a strong indication of preference 

though not as strong as actually buying it. 

Like the proposed algorithm the preference is a binary variable which takes the value of 1 for the 

cases where a user interacted with an item and 0 for the rest. With rui we notate the interaction 

score for a user u with an item i. 

𝑝𝑢𝑖 =  {
1    𝑟𝑢𝑖 > 0
0    𝑟𝑢𝑖 =  0

 

Also, in our case, it is needed to consider differences in preference level and so a confidence 

level is defined. Similarly, repetition of interaction is considered as a strong indication of 

preference. Confidence of each user item pair is given by: 

𝑐𝑢𝑖 = 1 + 𝑎( 𝑟𝑢𝑖 ) 
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A predefined constant used as scale regulator is notated as a. 40 was found after validation to 

perform well in our model. 

The next phase of the algorithm after creating the user item matrix is calculating the user item 

factor vectors. For calculation of the vectors the system proceed in calculating the vectors by 

minimizing the cost function proposed in [8]: 

min
𝑥,𝑦

∑ 𝑐𝑢𝑖(𝑝𝑢𝑖 − 𝑥𝑢
𝑇𝑦𝑖)2 + 𝜆 (∑‖𝑥𝑢‖2

𝑢

+ ∑‖𝑦𝑖‖2

𝑖

)

𝑢,𝑖

 

As x is denoted the user factor vector and as y the item factor vector. The 𝜆 (∑ ‖𝑥𝑢‖2
𝑢 +

∑ ‖𝑦𝑖‖
2

𝑖 ) is used to prevent overfitting. 

After having calculated the factor vectors we can get a prediction for user item pair by 

calculating the dot product of their factor vectors. 

𝑟𝑒𝑐𝑢𝑖 = 𝑥𝑢
𝑇  . 𝑦𝑖 

recui is the predicted preference score for a specific user towards a specific item. The systems 

proceeds in ranking all products for a user and a list ordered by preference can be extracted and 

used as recommendations. 

 

4.2.2 Association Rules mining 

Association rule mining aims to extract patterns from the user transactions. Many recommenders 

have been developed using association rules where they recommend items based on extracted 

rules with high Support and Confidence. Support is the number of times the rule applies against 

the total number of transactions. Confidence is the number of times the rule applies against the 

total number of transactions with the head item in them. 

Association rules in our system are used as a standalone algorithm for creating 

recommendations, though they can also be used for enhancing a collaborative filtering algorithm. 
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For extracting association rules, the system uses the apriori algorithm. Moreover, it is able to 

extract three different kinds of rules, based on the data provided for the extraction.  

In the first category, item level association rules, rules are being extracted based on item ids, 

treating each transaction separately. This method provides information about items usually sold 

together. Though this method does not provide many rules from the specific dataset we used, 

mainly due to the large number of items.  

A second approach, user level association rules, involves extracting rules based on items ids but 

treating all transactions for each user as a single transaction. They provide information about 

items that are usually bought together throughout the whole purchase history. 

The third approach, category level association rules, associates each item with its categories and 

extracts rules regarding categories. This method extracts information regarding categories 

usually bought together. These categories of rules are used externally to the collaborative 

filtering algorithm to provide recommendation for cases where the confidence level is high. 

Using association rules, the transactions of the user are checked and if found not to satisfy rules 

or if the user adds to his cart a base item from a rule then the appended item can be his 

recommendation. In addition this feature can form static recommendations in the bottom of base 

products in the form of “usually bought together” items. 

 

4.2.3 User-item matrix enhancement 

One of the common problems that collaborative filtering algorithms face is data sparsity. Data 

sparsity problem occurs when there is a large number of users and items and users interact with 

only a small proportion of the items. Matrix factorization techniques aim to calculate user item 

factor vectors based on the user item matrix. The denser the matrix is the more accurate the 

results become. 

An interesting implementation is described in [28] where association rule mining is used in order 

to make the user-item preference matrix denser by extracting rules and filling values accordingly. 
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Even though in the proposed implementation this method did not cause a significant 

improvement on accuracy, it is worth testing due to the fact that in our dataset we have actual 

transactions instead of ratings and views.  

Association rules are utilized to fill in missing values on the user item matrix. For this approach 

the second category of user level association rules is used. The item level category of rules does 

not produce the necessary number of rules required to produce a significant change in the matrix 

and thus in the result. The category level produces category recommendations and, since the 

ratings needed to be filled concern items, this category does not serve the purpose. Even though 

they could apply an additional weight to the product belonging to the recommended categories 

based on user transaction, are not implemented on the current algorithm. 

After extracting the association rules and the standard preprocessing of the raw data provides the 

user item matrix the algorithm proceeds with enhancing it. The system fills the matrix in specific 

user items where the user has bought the base item, but not the appended item. The score 

assigned to the previously unassigned user item pair should take into account the score of the 

base item. Thus, we could model the cases where the user bought the base item more than once. 

In addition, since the confidence provides information about the correlation between base and 

appended items this should also be considered in scoring. From the above, the score is equal to 

the score of base item times the confidence of the rule. Notating user with u, items with i, ia are 

the appended items and ib are the base items and nr is a newly assigned rating score that was 

previously absent for the specific user item pair. 

 

𝑛𝑟𝑢𝑖𝑎
= 𝑟𝑢𝑖𝑏

∗ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒  

After enhancing the user-item score the system proceeds by discovering the user item factor 

vectors of the enhanced matrix and the rest of phases of the recommendation system. 
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4.2.4 Initializing user item factor vectors 

As described earlier, the system implements a matrix factorization algorithm which aims at 

discovering the user and item factor vectors and use its dot product to produce recommendations. 

For discovering the factor vector it minimizes a cost function changing the factor vector with a 

step function in each iteration. For the above to be implemented an initial state of vectors is 

required. The proposed methodology in [8] uses random values for initialization of the vectors. 

In [26] a way of increasing prediction accuracy by initializing the user and item vectors before 

minimizing the cost function is presented. Similar to the proposed implementation the system 

decomposes the user item matrix and extracts user and item vectors which are used as initial 

vectors during the optimization method of alternating least squares. 

 

4.3 Dataset Information 

The dataset used for the evaluation of the system is the Retailrocket recommender system dataset 

. Retail Rocket is a company that develops personalization technologies for their customers and 

through this way help them increase marketing level and bring them profit. The dataset consists 

of three different files each of which is associated with a different aspect of an e-commerce 

system. 

Events.csv contains information regarding visitor behavior collected in a time period of 4.5 

months. The monitored visitor behavior includes three events, “view”, “addtocart” and 

“transaction”. Events.csv contains 2756101 records, from which 2664312 concern views, 69332 

depict add to cart event and 22457 transactions. The number of unique users in the dataset is 

1407580. The columns in the raw file are timestamp which shows the Unix time that the event 

took place, visitorid which is a number that uniquely identifies visitors, itemid which is uniquely 

identifies items, event which provides the name of the event that corresponds to the row and can 

take one of the values, view, addtocart, transaction and transactionid which uniquely identifies 

each transaction, all column values are filled for each row except for the transactionid which is  
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only filled when then event column is equal to transaction. Five random rows of the file are 

presented in the following table.  

timestamp visitorid event Itemid transactionid 

1433221332117 257597 view 355908  

1433223236124 287857 addtocart 5206  

1433222276276 599528 transaction 356475 4000 

1433221512084 1124962 view 213464  

1433221512427 1402325 view 20889  

This is our main file in our implementation due to the fact that contains all the necessary 

information in order to proceed with matrix factorization 

item_properties.csv (part 1, part 2) contain information about the items. It consists of 20275902 

rows regarding 417053 items and their various properties. The file has four columns, timestamp 

the unix time that the property was set, itemid, property which is the id that identifies the 

property and the value of the property. All values except the categoryid and available properties 

are anonymized in the dataset for privacy reasons. Five random rows of the file are presented in 

the following table.  

timestamp itemid property value 

1433041200000 183478 561 769062 

1431226800000 8921 categoryid 1188 

1433041200000 352564 available 0 

1436670000000 327059 663 1297729 n156.000 606827 

1441508400000 77208 468 n12.000 272976 
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This file is very useful regarding content-based algorithms. Though in our current 

implementation was not extensively utilized. Our approach uses this file to extract association 

rules for the categories of the items. 

Category_tree.csv contains information regarding the associations between item categories. It 

consists of 16690 rows with two columns. Its row describes the parent-children relationship 

between two categories. Five random rows of the file are presented in the following table.  

categoryid parentid 

1016 213 

809 169 

570 9 

1691 885 

536 1691 

This information can be used in content based approaches or for higher level association rule 

mining.  
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4.4 Flowchart diagrams 

4.4.1 Implicit ALS main flow 
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4.4.2 Association rules extraction diagrams 

Item-level association rules 

 

 

 

 



60 

 

User-level association rules 
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Category-level association rules 
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4.4.3 Enhanced user-item matrix 

 



63 

 

4.4.4 Initialized user and item factor vectors 
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4.5 Evaluation  

Regarding the evaluation of the system mean percentile ranking is the quality measure of the 

system. For the evaluation the datasets were split in training and testing set according to time. 

The data consist of three months’ worth of user behavior, for the training set we included all but 

the last week which we used as test set. The distinction of dates was made by converting the 

timestamp into the actual date time representation.  

The variables we test in order to tweak the system are: a which is the proposed by the literature 

to be multiplied with the number of user item interaction in our data and form the preference 

score, the transaction weight which is used to model the difference in importance between views 

and transactions, the number of factors that the algorithm will use in order to calculate the 

vectors of the matrix and the iterations which the alternating least squares algorithm will use for 

the calculation.  
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5 Implementation of the System 

The implementation was done in python v3.6.7rc1. The IDE used for the development of the 

algorithm is the PyCharm 2018.2 Community Edition. In total there were developed four 

different files each of which contributes to the overall flow of the algorithm. The files were 

divided based on their scope and specific purpose they serve. Moreover we make use of two 

external libraries implicit.py and apyori.py to aid with the implementation of the system. 

 

5.1 Files 

The main file is the main.py. The preprocessor.py file is where the preprocessing of our dataset 

is done in order to construct the user-item matrix. The arm.py is the file responsible for 

extracting the association rules needed by the system. Last erp.py holds the function responsible 

for the evaluation of the system. 

 

5.2 External Libraries 

5.2.1 Implicit.py 

Implicit.py is a python library which provides implementations of various well known 

algorithms regarding recommendations on implicit feedback datasets. It includes the main flow 

of Alternating least squares which is the core algorithm of our implementation.  

Other notable implementations included are the Bayesian Personalized Ranking and Item-Item 

Neighbour models with Cosine similarity, TFIDF or BM25. 
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5.2.2 Apyori.py 

Apyori provides the system with a simple implementation of the Apriori algorithm. It used to 

extract the association rules in the various phases of the system that is required. 

 

5.3 Functions 

5.3.1 main.py 

initialize_factor_matrices 

This function is responsible for the initialization of the user and item factor vectors. It 

implements SVD algorithm on the user item matrix and set the initial vectors. 

 

5.3.2 preprocessor.py 

standar_preprocessing 

This function is responsible for reading our dataset from the csv files. Next it proceeds in 

transforming the data in a better form. At this point the preference score is computed based on 

the monitoring of user behavior and proceeds in eradicating the different user actions. In addition 

splits the dataframes based on timestamp. Returns a dataframe for training and a dataframe for 

testing. 

get_training_matrix 

This function is the one responsible for returning the user item matrix. Moreover, it also returns 

separately user and item indices as well as the testing dataset. It is called the 

standar_preprocessing function. It is called in the beginning of the main.py file when the 

standard matrix is used for training. 

get_all_purchases_rules_enhanced_training_matrix 
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This function is responsible for creating the enhanced user item matrix. It calls the 

standar_preprocessing function to receive the initial user item matrix. Next calls the 

apyori_rules_all_purchases function of the arm.py file and receives the user-level association 

rules. Then it proceeds with discarding the rules with 100% confidence and fills with the rest the 

user item matrix where necessary. Last likewise get_training_matrix returns the enhanced user-

item matrix, the user and item indices separately as lists and the training matrix. It is called in the 

beginning of the main.py file when the enhanced matrix is used for training. 

 

5.3.3 arm.py 

get_transaction_records 

This function is responsible to read the csv files and create the transaction dataframes. First reads 

the events csv and keeps only the information about transactions. Next it reads the item 

properties files and assigns to each transaction a list of category ids that the purchased items 

belong to. Next creates a copy of the transaction dataframe in which the transactions are grouped 

together based on the userid associated with them. Then it returns a dataframe which consist of 

transactions ungrouped and the item ids and category ids of each transaction and one dataframe 

which consists of each users overall transactions grouped and the ids of the items they purchased. 

The function is called by the apyori_rules_items, apyori_rules_categories, 

apyoti_rules_all_purchases for extraction association rules.  

apyori_rules_items 

This function is responsible for returning a list of the item-level association rules extracted from 

the transactions. It calls the get_transactions_records and with the returned records creates a list 

of the item ids in the transactions which feeds to the apriori function of the apyory library. 

Apriori function provides with the association rules which next are converted to a list and 

returned. 

apyori_rules_categories 
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This function is responsible for returning a list of the category-level association rules extracted 

from the transactions. It calls the get_transactions_records and with the returned records creates a 

list of the category ids in the transactions which feeds to the apriori function of the apyory 

library. Apriori function provides with the association rules which next are converted to a list and 

returned. 

apyori_rules_all_purchases 

This function is responsible for returning a list of the category-level association rules extracted 

from the transactions. It calls the get_transactions_records and with the returned user grouped 

records creates a list of the item ids in the transactions which feeds to the apriori function of the 

apyory library. Apriori function provides with the association rules which next are converted to a 

list and returned. 

 

5.3.4 erp.py 

save_results 

This functions is responsible for saving the recommendations resulted by the algorithm. It is in 

the main.py file each time the recommend function returns the predicted recommendations for a 

specific user. The function converts and saves the recommendations as csv file in the results 

folder. 

get_mean_percentile_rank 

This function is responsible for calculating the percentile ranking of the predictions. It is called 

in the main.py file each time the recommend function returns the predicted recommendations for 

a specific user and after the save_results function has been called. It reads the saved 

recommendations for a specific user from the result folder and proceeds in calculating the mean 

percentile ranking of the specific user which then returns. 
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5.3.5 External functions 

AlternatingLeastSquares (implicit library Class ) 

AlternatingLeastSquares is the function used by the implicit library and implements the 

optimization of the cost function. It is called in main.py file after the get_training_matrix or the 

get_all_purchases_rules_enhanced_training_matrix. It provides the necessary functions for ALS 

fit ( implicit library ) 

The fit is the main function of AlternatingLeastSquares class and implements the optimization 

method on the user item matrix. It is called in the main.py file after the get_training_matrix or 

the get_all_purchases_rules_enhanced_training_matrix which provide the training matrix or after 

the initialize_factor_matrices function which initializes the user factor vector and item factor 

vector with the decomposed user-item matrix after SVD. 

recommend ( implicit library ) 

The recommend function is responsible of returning a list of items, for specific user, ranked 

based on the dot product of the discovered user and item factor vectors. It is called in the main.py 

file after the fit function has completed computing the factor vectors.   

 

6 Evaluation and Future Work 

 

6.1 Evaluation 

For the evaluation of the system we tested the algorithm on various transformations of the user-

item matrix. Since negative feedback for the recommended items is not in the scope of our work, 
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accuracy metrics are not suitable for the evaluation of the system. Thus, the metric used for 

evaluating the quality of the proposed methodology is the Mean Percentile Ranking (MPR). 

The first thing that needs to be evaluated is if the algorithm performs better considering all event 

types or taking into account only transaction events. Thus two user item matrices are constructed 

using the proposed methodology, one constructed based solely on transactions and one including 

all three interactions. We refer to the user-item matrix that includes all interactions as multi-type 

MT matrix and the one that contains only transactions as single-type matrix ST.  

Furthermore, the algorithm is evaluated on how well it performs when applying methods for 

increased accuracy. Thus the tests on each of the previous user-item matrices implement four 

different methods, standard method, enhanced by use of association rules method, by initializing 

the user item factor vectors method and by enhancing the matrix as well as initializing the factor 

vectors method. With 4 different methods on two user item matrices we calculate the mean 

percentile ranking for eight different cases. 

For association rule enhancing the user level category of extracted rules were used as described 

in the presentation of the design. In total 23 rules have been extracted using minimum confidence 

of 0.5. Implementing changes where it was necessary lead to 44 changes in the initial user-item 

matrix.  

For initialization of the factor vectors the SVD decomposed the initial user-item matrix without 

any prior filling of missing values. 

In addition, on both matrices, visitors who have not viewed more than 5 items were deemed as 

unnecessary noise and removed from the training set since the information provided is too little 

to produce meaningful recommendations. In addition this serves the purpose of reducing the total 

size of the evaluated training set and reducing its sparsity. Even though this hinders the systems 

recommendation coverage, addressing the cold start issue is out of scope of this dissertation. 
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6.1.1 Single-type evaluation with transaction events 

 

single-type    ST 

enhanced single-type   EST 

initialized single-type   IST 

enhanced & initialized single-type EIST 

 

 

In this case the standard methodology provides the best results. Unexpectedly all the applied 

methods aiming at increasing the accuracy of the system actually hindered its accuracy greatly. 

The assumption to these results is that in this case the user-item matrix uses a small number of 

users and items and is dense enough for the algorithm to perform well, in which case any attempt 

to add values or initialize the factor vectors adds noise to the matrix. 
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6.1.2 Multi-type evaluation with transactions, views and addtocart events 

 

multi-type      MT 

enhanced multi type    EMT 

initialized multi-type    IMT 

enhanced & initialized multi-type  EIMT 

 

 

In this case all of the applied methods for increased accuracy actually did increase the 

performance of the algorithm. Notable association rules enhancing introduced the largest 

improvement of 3.13%. Following association rules initialization of the factor vectors improved 

the standard methodology by nearly two percent, 1.94 precisely. Though it was assumed that 

implementing both enhancement and initialization would improve performance even further that 

is not the case. Combination of both improvement methodologies improved the algorithm by a 

mere 0.67%.  
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6.1.3 Single-type vs multi-type comparison 

 

 

By comparing the results considering single-type and multi-type matrices it is notable that 

single-type user-item matrix performs a lot better than any other type of matrix evaluated. 

Specifically compared to the best performing case of multi-type matrices, the association rules 

enhanced multi-type matrix, it still performed 5.18% better. 

The reason that the single-type performs better is not exclusively that it is a better model. The 

main difference in the two user-item matrices is data sparsity. Sparsity greatly affects matrix 

factorization techniques. In both matrices users with only a few interactions have been 

eliminated. This resulted in a denser single-type matrix. More specifically the multi-type matrix 

has a sparsity degree of 0.01%, which means that only the 0.01% of user-item pairs have ratings. 

On the other hand single-type matrix has a sparsity degree of 1% which means that only 1% of 

all possible user-item ratings are filled. Even though single-type matrix is also too sparse it is ten 

times denser than the multi-type matrix. 
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6.1.4 Coverage 

In contrast to accuracy a quality measure often required in recommendation systems is 

recommendations coverage. In terms of coverage the single-type matrix can create 

recommendations for 1056 users on 106 different items. In contrast the multi-type matrix is able 

to recommend 16022 different items to 43827 users. In terms of coverage the multi-type matrix 

is more suitable for creating recommendations.  

 

6.2 Conclusions 

The conclusions of this dissertation project are categorized regarding the multi-type or single-

type used, the association rules extracted, the method followed enhancing user-item matrix with 

association rules and the method followed for initialization the factor vectors. 

Regarding the use of different types of implicit information with the implemented method the 

results show that a lot of noise is added hindering the accuracy of the algorithm. Though the 

predictions are far from random, thus considering also the difference in coverage between single-

type and multi-type (14966 more users and 15916 more items in multi-type) deems the multi-

type a promising approach which requires further research for finding a more suitable approach 

to include these information. 

Regarding the association rule mining, three different categories of extracted rules were 

introduced. Item level rules which extracted 23 rules, User level rules which also extracted 23 

rules and Category level which extracted 173 rules. Category rules seems the most promising 

since it models the associations between product categories and can be used in real time 

recommendations based on currently added cart items.  

User level categories are the most suitable of the three for the enhancement of the user-item 

matrix since they concern products and model better the association between them in the long-

term. Even though the number of extracted rules is very small for addressing the data sparsity on 
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their own, the results of system evaluation report that they can benefit matrices with data noise 

such as multi-type matrix in the described methodology. 

Initialization of the factor vectors similar to association rules benefit matrices with noise and can 

improve their accuracy. Though further research is required regarding the decomposition of the 

matrix as to discovering the best approach for filling the user-item matrix from which the initial 

vectors will be extracted. 

 

6.3 Future Work 

Future research should examine different ways of including different implicit information in the 

user-item matrix and best performing models. The literature for predicting future transactions 

proposes treating other implicit information as auxiliary data and implements a regression model 

for discovering the impact they pose in the final transaction [25]. 

Implicit datasets that offer transaction history provide opportunities for sequence analysis and 

rule based recommenders in general. In this dissertation we considered only association rules and 

let sequential pattern analysis as one of the best next steps for improving the algorithm. 

For accuracy improvement the initialization of the factor vectors should be further researched. 

Specifically, an adequate way of filling the initial matrix prior to decomposition should be 

discovered. Literature proposes averages proved to improve accuracy greatly. In addition, other 

ways for singular value decomposition should be examined. 

The data sparsity issue should be examined further. Association rules alone did not manage to 

increase the matrices significantly. One possible way could be via product similarity based on 

item properties.  

Information about products is also available in the dataset giving ground to the implementation 

of Content-based filtering techniques. A possible next step could be implementing dynamic user 

profiling based on properties of products bought, viewed or added to cart. Additionally, since a 
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basic criterion during purchase decision is item price, the impact of pricing on the users 

preferences should be included in future research.  

Similarly a lot of products are suitable only for specific time periods such as seasons or a specific 

age. Thus, timing should also be considered in product recommendation research. Due to the fact 

that often implicit dataset include a huge amount of information research on implementing such a 

model in distributed systems should be considered. 
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